

A rapid method for isolation of total DNA from pathogenic filamentous plant fungi

D. González-Mendoza¹, R. Argumedo-Delira², A. Morales-Trejo¹, A. Pulido-Herrera¹, L. Cervantes-Díaz¹, O. Grimaldo-Juarez¹ and A. Alarcón²

¹Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Ejido Nuevo León, Baja California, México ²Área de Microbiología, Postgrado de Edafología, Colegio de Postgraduados Campus Montecillo, Montecillo, Texcoco, Estado de México

Corresponding author: D. González-Mendoza E-mail: daniasaf@gmail.com

Genet. Mol. Res. 9 (1): 162-166 (2010) Received August 31, 2009 Accepted November 20, 2009 Published February 2, 2010

ABSTRACT. DNA isolation from some fungal organisms of agronomic importance is difficult because they have cell walls or capsules that are relatively unsusceptible to lysis. We have developed a fast DNA isolation protocol for *Fusarium oxysporum*, which causes fusarium wilt disease in more than 100 plant species, and for *Pyrenochaeta terrestris*, which causes pink root in onions. This protocol was based on the sodium dodecyl sulfate/ phenol method, without β -mercaptoethanol and without maceration in liquid nitrogen; it uses phenol/chloroform extraction to remove proteins and co-precipitated polysaccharides. The A_{260/280} absorbance ratios of isolated DNA were around 1.9, suggesting that the DNA fraction was pure and may be used for further analysis. Additionally, the A_{260/230} values were higher than 1.8, suggesting negligible contamination by polysaccharides. The DNA isolated by this protocol is of sufficient quality for molecular applications; this technique could be applied to other organisms that have similar substances that hinder DNA extraction.

Key words: Genomic DNA extraction; *Fusarium oxysporum*; *Pyrenochaeta terrestris*; Polymerase chain reaction; Filamentous fungi

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 9 (1): 162-166 (2010)