

Effect of MDR1 polymorphism on multidrug resistance expression in breast cancer patients

M. Taheri^{1,2}, F. Mahjoubi¹ and R. Omranipour³

¹Departament of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran ²Departament of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran ³Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran

Corresponding author: F. Mahjoubi E-mail: frouz@nigeb.ac.ir

Genet. Mol. Res. 9 (1): 34-40 (2010) Received October 1, 2009 Accepted December 15, 2009 Published January 12, 2010

ABSTRACT. One of the limitations in the treatment of cancer patients with chemotherapy is the development of multidrug resistance (MDR). A well-known mechanism responsible for drug resistance is over-expression of ABC-transporter genes such as MDR1. This gene encodes p-glycoprotein (P-gp), a transmembrane glycoprotein that transports many hydrophobic substrates and anti-cancer drugs out of the cell. MDR1 gene polymorphisms could alter the expression level of P-gp and consequently result in drug resistance. We investigated a possible association between MDR1 gene C3435T polymorphism and its expression in Iranian breast cancer patients. PCR-RFLP was used for the detection of C3435T single nucleotide polymorphism in 54 breast cancer patients and 50 healthy individuals. The expression level of MDR1 was determined by real-time quantitative PCR. We observed no difference in the frequency of C3435T polymorphism between breast cancer patients and healthy controls. However, there was a significant association between MDR1 expression levels and C3435T polymorphism in the patients. C3435T polymorphism may play a role in inducing drug resistance by altering the expression level of the MDR1 gene.

Key words: Multidrug resistance; MDR1 gene; C3435T polymorphism; Real-time polymerase chain reaction; Breast cancer