

Construction and partial characterization of a *Corynebacterium pseudotuberculosis* bacterial artificial chromosome library through genomic survey sequencing

F.A. Dorella¹, M.S. Fachin¹, A. Billault², E. Dias Neto³, C. Soravito², S.C. Oliveira⁴, R. Meyer⁵, A. Miyoshi¹ and V. Azevedo¹

¹Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
²Centre d'Étude du Polymorphisme Humain-CEPH, Paris, France
³Ludwig Institute for Cancer Research, São Paulo, SP, Brasil
⁴Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
⁵Instituto de Ciências da Saúde, Vale do Canela, Salvador, BA, Brasil Corresponding author: V. Azevedo E-mail: vasco@icb.ufmg.br

Genet. Mol. Res. 5 (4): 653-663 (2006) Received July 14, 2006 Accepted September 7, 2006 Published November 1, 2006

ABSTRACT. *Corynebacterium pseudotuberculosis* is a gram-positive bacterium that causes caseous lymphadenitis in sheep and goats. However, despite the economic losses caused by caseous lymphadenitis, there is little information about the molecular mechanisms of pathogenesis of this bacterium. Genomic libraries constructed in bacterial artificial chromosome (BAC) vectors have become the method of choice for clone development in high-throughput genomic-sequencing projects. Large-insert DNA libraries are useful for isolation and characterization of important genomic regions and genes. In order to identify targets that might be useful for genome sequencing, we constructed a *C. pseudotu*-

Genetics and Molecular Research 5 (4): 653-663 (2006)

F.A. Dorella et al.

berculosis BAC library in the vector pBeloBAC11. This library contains about 18,000 BAC clones, with inserts ranging in size from 25 to 120 kb, theoretically representing a 390-fold coverage of the *C. pseudotuberculosis* genome (estimated to be 2.5-3.1 Mb). Many genomic survey sequences (GSSs) with homology to *C. diphtheriae*, *C. glutamicum*, *C. efficiens*, and *C. jeikeium* proteins were observed within a sample of 215 sequenced clones, confirming their close phylogenetic relationship. Computer analyses of GSSs did not detect chimeric, deleted, or rearranged BAC clones, showing that this library has low redundancy. This GSSs collection is now available for further genetic and physical analysis of the *C. pseudotuberculosis* genome. The GSS strategy that we used to develop our library proved to be efficient for the identification of genes and will be an important tool for mapping, assembly, comparative, and functional genomic studies in a *C. pseudotuberculosis* genome sequencing project that will begin this year.

Key words: Bacterial artificial chromosome library, *Corynebacterium pseudotuberculosis*, Genomic survey sequence

INTRODUCTION

Corynebacterium pseudotuberculosis, a gram-positive intracellular pathogen, is the causative agent of caseous lymphadenitis in sheep and goats. The widespread occurrence and the economic importance of this disease have prompted investigation of its pathogenesis. However, the genetic basis of *C. pseudotuberculosis* virulence is still unknown (Dorella et al., 2006). The massive accumulation of prokaryotic DNA sequences generated by microbial genome projects allows us to rapidly investigate biological features and identify new molecular targets that might be useful for the development of immunological or chemotherapeutic reagents against any organism of choice (Celestino et al., 2004). Construction and characterization of a *C. pseudotuberculosis* library will facilitate further genetic studies of this organism, including the sequencing of its entire genome.

Large insert libraries in bacterial artificial chromosome (BAC) vectors are particularly important, not only for genome sequencing projects, but also for comparative and functional genomic studies (Battistoni et al., 2005). The physical maps constructed with BACs are still widely used in genome research (Zhang and Wing, 1997). The BAC system is based on the well-studied *Escherichia coli* F factor. Replication of the F factor in *E. coli* is strictly controlled, since the F plasmid is maintained in low copy number (one or two per cell), thus reducing the potential for recombination between DNA fragments carried by the plasmid. F factors carrying inserted bacterial DNA are capable of maintaining fragments as large as 1 Mb, suggesting that the F factor is suitable for cloning large DNA fragments (Shizuya et al., 1992; Tillet and Neilan, 1998). The choice of the BAC cloning system

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

allows us not only to cover the entire genome with a relatively small number of clones, but also to reduce the potential for recombination between DNA fragments, and more importantly, to avoid lethal overexpression of cloned bacterial genes (Amemiya et al., 1999). The BAC system allows us to clone large DNA molecules from a variety of complex genomic sources into bacteria, in which the DNA is stable, easy to manipulate, and is from a single foreign DNA source. The genetic stability of cloned DNA may be one of the most important aspects of this system (Shizuya et al., 1992; Zhang et al., 1996; Simon, 1997). BAC libraries of genomic DNA from numerous eukaryotic species have been constructed, and this has become the preferred approach for sequencing projects (Shizuya et al., 1992; Zhang et al., 1996; Zhang and Wing, 1997; Rogel-Gaillard et al., 1999). Furthermore, genomic libraries are a powerful resource for genetic studies of bacteria; there are various examples of successful use of this technology (Philipp et al., 1996; Brosch et al., 1998; Capela et al., 1999; Gordon et al., 1999; Brodin et al., 2002; Tauch et al., 2002, 2005; Feng et al., 2005; Walter et al., 2005).

We describe here the construction of a *C. pseudotuberculosis* BAC library in pBeloBAC11 (Shizuya et al., 1992) and the beginning of the characterization of this library through a BAC-end sequencing strategy, namely genomic survey sequencing (GSS) (Kelley et al., 1998; Zhao, 2000; Ripoll et al., 2000).

MATERIAL AND METHODS

Bacterial strains, growth conditions and plasmid

We used the bacterial strain *C. pseudotuberculosis* 1002, a wild strain provided by Dr. Roberto Meyer from the "*Corynebacterium pseudotuberculosis* Culture Collection", Laboratory of Immunology (Federal University of Bahia); identification was confirmed by biochemical tests (API CORYNE, Biomerieux, Marcy l'Etoile, France). The *E. coli* strain used was *E. coli* DH10B (F⁻mcrA Δ (mrr-hdsRMS-mcrBC) ϕ 80d LacZ Δ M15 Δ Lac X74 endA1 recA1 deoR Δ (ara,leu)7697 araD139 galU galK nupG rpsL λ^- ; Grant et al., 1990). The plasmid pBeloBAC11 was as previously described (Shizuya et al., 1992).

Corynebacterium pseudotuberculosis 1002 was aerobically grown in 2X YT (Difco Laboratories, Detroit, MI, USA) medium. *E. coli* was aerobically grown at 37°C in Luria-Bertani medium (LB, Difco Laboratories). When necessary, the medium was supplemented with chloramphenicol ($12.5 \mu g/mL$).

BAC vector preparation

Plasmid pBeloBAC11 preparation was carried out as described by Woo et al. (1994).

Preparation of source chromosomal DNA

High-molecular weight *C. pseudotuberculosis* DNA used in library construction was prepared on agarose plugs according to Azevedo et al. (1993). Plugs were stored in 50 mM EDTA at 4°C and washed three times in 0.1% Triton X-100 buffer prior to use. Partial digestion and size selection were carried out as previously described (Brosch et al., 1998).

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

F.A. Dorella et al.

Cloning of C. pseudotuberculosis DNA into pBeloBAC11

Agarose containing the selected fragments was melted at 70°C for 5 min and digested with GELase (Epicentre Technologies, Madison, WI, USA), using 1 U per 100 μ L of gel slice. Then, a *C. pseudotuberculosis* library was constructed by ligation of partially digested *Hin*dIII fragments (25-120 kb) into a previously prepared pBeloBAC11 vector, in a 1:10 molar ratio using 5 U T4 Ligase (Invitrogen Ltd., CA, USA), at 16°C for 18 h. Ligation mixtures were heated to 65°C for 15 min and then drop-dialyzed against Tris-EDTA, using VS 0.025 mM membranes (Millipore, Bedford, MA, USA). Transformation of *E. coli* DH10B was carried out by electroporation. Competent cells were prepared; electroporation and selection of recombinants were performed according to Brosch et al. (1998). Each selected clone (white colony) was inoculated manually into 96-well plates, containing 100 μ L LB plus chloramphenicol (12.5 μ g/mL) and incubated at 37°C overnight. After incubation, 100 μ L of 80% glycerol was added to each well; the plates were sealed with polyester film and stored at -70°C.

Sizing of BAC DNA inserts

BAC DNA from recombinant clones was isolated by the alkaline lysis method, as previously described (Birnboin and Doly, 1979), with minor modifications. To estimate the insert size, BAC DNA was digested with *Not*I and analyzed by PFGE using a 1% Agarose SeqPlaque gel in 1X TAE buffer and 0.5 μ g/mL ethidium bromide at 10°C, with a ramp time from 4 s at 6.25 V/cm for 15 h on an LKB-Pharmacia CHEF apparatus. The MidRange II PFGE marker (New England Biolabs) was used as a size standard.

GSS generation through BAC-end sequencing

Sequencing reactions were performed using the *Taq* DyeDeoxy Terminator cycle sequencing kit in an ABI PrismTM 377 DNA Sequencer (Applied Biosystems, Foster City, CA, USA). Sequencing primers were M13 (-40, forward) 5' GTT TTC CCA GTC ACG AC 3' and M13 (reverse) 5' CAG GAA ACA GCT ATG AC 3'. One microgram of DNA and 5 μ M of the primers were added to 14- μ L reaction mixtures containing 5 μ L of dye terminator premix. Sequencing reactions were cycled according to the following program: 5 min at 95°C and 40 cycles of 20 s at 95°C, 15 s at 55°C and 1 min at 60°C. Reaction products were purified as follows: 120 μ L 75% isopropanol (v/v) was added to samples, which were incubated in the dark for 20 min at room temperature. The samples were then centrifuged at 14 rpm for 20 min and the supernatants were discarded; 100 μ L 70% ethanol (v/v) was added and the resulting mixture was centrifuged at 14 rpm for 10 min. The supernatants were discarded and the DNA was resuspended in 10 μ L deionized formamide.

Bioinformatics

Similarity searches of each BAC-end sequence were made with the "Basic Local Alignment Search Tool" software (http://www.ncbi.nlm.nih.gov/blast) service of the National Center for Biotechnology Information (NCBI). GSSs were classified according to BLAStx

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

analysis. Only those GSSs with a positive match [best BLAST hit with an expected value (*E*) of $<10^{-10}$ and score >42] for a protein in the non-redundant database were considered.

Nucleotide sequence accession numbers

The nucleotide sequences that were identified were deposited in the GenBank database (http://www.ncbi.nlm.nih.gov/Genbank/) under accession numbers BH740422 to BH740650.

RESULTS AND DISCUSSION

A genomic library with approximately 18,000 clones was constructed as described in Material and Methods, with inserts with an average size of 25 to 120 kb (Figure 1). A random sample of 215 clones was successfully end sequenced and deposited in the GenBank databases.

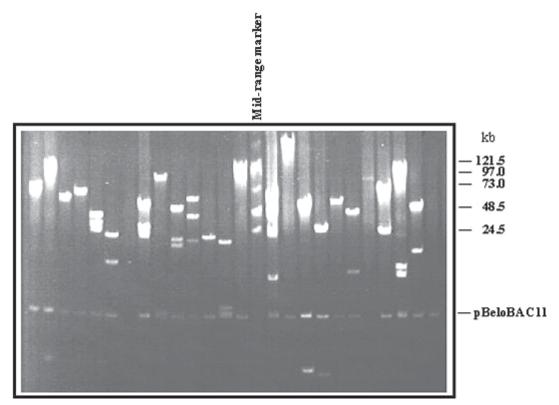


Figure 1. Random samples of BAC DNA digested with Not1 and analyzed by PFGE for estimating the insert sizes of BACs.

After deleting vector sequences and unreliable data, an average of 359 bases per clone was obtained and used for database searches. These data theoretically represent a 390-fold coverage of the *C. pseudotuberculosis* genome (estimated to be 2.5-3.1 Mb; Redenbach et al., 2000). The redundancy of the library was estimated to be 13% through sequence alignment using the CAP3 software (http://pbil.univ-lyon1.fr/cap3.php). A high-quality genomic library

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

F.A. Dorella et al.

must display a value lower than 20% redundant sequences, clones without inserts or clones with contamination.

Sequence similarities identified by BLASTx were considered statistically significant (*E*) at $<10^{-10}$ and score >42. Among the 229 GSSs obtained, 123 (53.7%) had a significant match with proteins of the GenBank database.

Table 1 shows the best BLASTx hits obtained in the similarity searches; the organisms were ordered according to the degree of conservation. A significant number of valid GSSs showed similarity with *C. diphtheriae*, *C. glutamicum*, *C. efficiens*, and *C. jeikeium* proteins, confirming their close phylogenetic relationship (Figure 2). Similarity with proteins from other groups was also observed. Three GSSs presented similarity with *C. pseudotuberculosis* sequences (1 for 16S rRNA and 2 for RpoB), validating this method for *C. pseudotuberculosis*.

GSS Accession number	Function of best BLASTx hit	Source	Score	E-value
BH740423	Peptide deformylase	Cd	194	3e-14
BH740425	6-Phosphogluconate dehydrogenase	Cj	318	2e-28
BH740428	Putative siderophore-binding protein	Cd	238	5e-19
BH740431	Hypothetical protein DIP2051	Cd	225	1e-17
BH740433	Betaine aldehyde dehydrogenase	Cd	577	2e-58
BH740434	ATPase involved in DNA repair	Cg	172	1e-11
BH740438	Hypothetical protein CE2578	Ce	266	2e-22
BH740442	Adenine phosphoribosyltransferase	Cd	263	4e-22
BH740444	Putative rRNA methyltransferase	Cd	163	2e-10
BH740446	Putative cytochrome C-related protein	Cd	337	1e-30
BH740449	Hypothetical protein CE2945	Ce	263	8e-22
BH740450	Bifunctional ornithine acetyltransferase/N-acetylglutamate synthase	Cd	617	7e-63
BH740452	Putative cytochrome C-related protein	Cd	438	2e-42
BH740454	Putative peptide transport system membrane protein	Cd	546	6e-55
BH740456	Phosphate acetyltransferase	Cd	251	1e-20
BH740457	DNA ligase	Cd	436	4e-42
BH740458	50S ribosomal protein L4	Cd	762	7e-80
BH740459	Putative helicase	Cd	369	2e-34
BH740460	Putative transferase	Cd	244	6e-20
BH740461	Hypothetical protein DIP0733	Cd	306	4e-27
BH740465	Putative phosphoserine phosphatase	Ce	420	3e-40
BH740467	Putative glycosyltransferase	Cd	342	4e-31
BH740469	Phosphate ABC transport system, ATP-binding protein	Cj	360	3e-33
BH740470	Methylmalonyl-CoA mutase	Cd	476	8e-47
BH740472	DNA gyrase subunit A	Cd	399	1e-37
BH740473	DeaD/DeaH family helicase	Cd	487	8e-48
BH740475	16S rRNA gene	Ср	219	5e-17
BH740477	Choline dehydrogenase	Cd	212	3e-16
BH740478	DeaD/DeaH family helicase	Cd	416	8e-40
BH740479	Hypothetical protein DIP1287	Cd	269	8e-23
BH740481	Guanosine pentaphosphate synthetase/polyribonucleotide nucleotidyltransferase	Cd	229	4e-18
BH740486	Hypothetical protein DIP0165	Cd	218	1e-16
BH740487	Hypothetical protein DIP1567	Cd	199	1e-14

Continued on next page

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

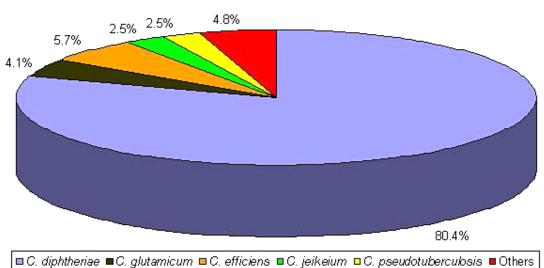
Table 1. Continued.

GSS Accession number	Function of best BLASTx hit	Source	Score	E-value
BH740488	Putative hydrolase	Cd	285	1e-24
BH740489	RpoB	Ср	450	9e-44
BH740491	ATP-dependent Clp protease	Cj	175	9e-12
BH740493	Putative tetR-family transcriptional regulator	Cd	280	4e-24
BH740494	Elongation factor EF-2	Cd	542	2e-54
BH740495	Putative sialidase precursor	Cd	499	2e-49
BH740497	Putative oxidoreductase	Cd	397	1e-37
BH740496	Putative thiosulfate sulfurtransferase	Cd	521	5e-52
BH740498	Endonuclease III	Cd	467	1e-45
BH740500	Putative oxidoreductase390	Cd	390	3e-37
BH740501	Putative protoporphyrinogen oxidase HemK	Ce	475	7e-47
BH740502	Putative membrane protein	Cd	381	6e-36
BH740503	Peptide methionine sulfoxide reductase A	Cd	576	9e-59
BH740504	Conserved hypothetical protein	Cd	266	9e-23
BH740505	Hypothetical protein DIP0651	Cd	424	4e-41
BH740506	Choline dehydrogenase	Cd	693	3e-72
BH740507	Putative fimbrial associated sortase-like protein	Cd	247	1e-20
BH740509	Putative flavoprotein phosphopantothenoylcysteine synthase/decarboxylase	Ce	379	1e-35
BH740513	5-Methyltetrahydrofolate-homocysteine methyltransferase	Cd	343	9e-32
BH740512	Putative helicase	Cd	627	2e-64
BH740515	Hypothetical protein DIP1024	Cd	337	8e-31
BH740516	Hypothetical protein DIP1024	Cd	337	8e-31
BH740517	6-Phosphofructokinase	Cd	160	2e-10
BH740521	Isoleucyl-tRNA synthetase	Cd	211	2e-16
BH740522	Hypothetical protein DIP0262	Cd	284	7e-25
BH740526	Pyruvate kinase	Cd	296	7e-26
BH740525	Putative penicillin-binding (cell division related) protein	Cd	469	7e-46
BH740527	Putative succinate dehydrogenase cytochrome B subunit	Cd	336	2e-30
BH740530	Putative serine/threonine protein kinase	Cd	248	2e-20
BH740529	Putative serine/threonine protein kinase	Cd	248	2e-20
BH740532	Hypothetical protein DIP1024	Cd	190	1e-13
BH740531	Putative peptide transport system secreted protein	Cd	322	6e-29
BH740534	Putative succinate dehydrogenase cytochrome B subunit	Cd	308	2e-27
BH740533	Glycosyl transferase	Cg	235	1e-18
BH740535	Putative phospholipid biosynthesis	Cď	362	2e-33
BH740536	Hypothetical protein DIP1460	Cd	637	2e-65
BH740538	Glyceraldehyde-3-phosphate dehydrogenase	Cd	297	5e-26
BH740537	Hypothetical protein CE1118	Ce	313	7e-28
BH740539	Putative secreted protein	Cd	212	4e-16
BH740541	Hypothetical protein DIP1218	Cd	259	1e-21
BH740542	Hypothetical protein DIP2344	Cd	236	5e-19
BH740544	Putative mutase	Cd	160	4e-10
BH740545	Hypothetical protein DIP2060	Cd	310	1e-27
BH740546	30S ribosomal protein S1	Cg	186	3e-13
BH740551	Hypothetical protein DIP2095	Cď	169	3e-11
BH740550	Choline dehydrogenase	Cd	514	4e-51
BH740553	DNA repair protein	Cd	302	1e-26
BH740555	Hypothetical protein DIP1502	Cd	253	6e-21
BH740556	Hypothetical protein DIP1502	Cd	253	6e-21

Continued on next page

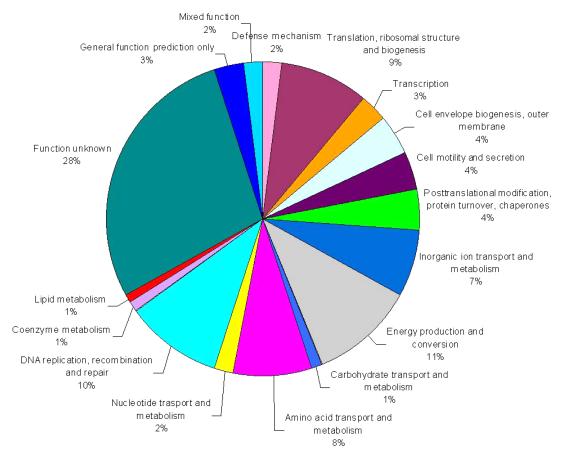
Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

F.A. Dorella et al.


Tab	le 1.	Continued	•
-----	-------	-----------	---

GSS Accession number	Function of best BLASTx hit	Source	Score	E-value
BH740557	Putative secreted protein	Cd	305	5e-27
BH740561	Putative ABC transport system secreted protein	Cd	517	2e-51
BH740564	Hypothetical protein CE1265	Ce	393	3e-37
BH740563	Hypothetical protein DIP1078	Cd	560	1e-56
BH740565	Putative oxidoreductase	Cd	203	4e-15
BH740566	Hypothetical protein DIP1157	Cd	307	3e-27
BH740567	Hypothetical protein DIP1539	Cd	235	7e-19
BH740568	RpoB	Ср	227	6e-18
BH740573	D-alanylalanine synthetase	Ċd	173	1e-11
BH740574	Putative bacterioferritin	Cd	254	4e-21
BH740579	Putative prolyl oligopeptidase family protein	Cd	189	2e-13
BH740583	Putative secreted protein	Cd	183	1e-12
BH740586	Putative tetR family transcriptional regulator	Cd	159	2e-10
BH740587	Non-ribosomal peptide synthetase	Cg	220	2e-17
BH740597	Putative oxidoreductase	Cd	217	4e-17
BH740598	Putative thiosulfate sulfurtransferase	Cd	461	2e-45
BH740601	Hypothetical protein DIP0775	Cd	163	7e-11
BH740603	Predicted RNA-binding protein	Cg	191	9e-14
BH740605	Adenylyltransferase	Cd	229	4e-18
BH740612	Putative peptide transport system membrane protein	Cd	337	1e-30
BH740616	Hypothetical protein DIP1581	Cd	229	2e-18
BH740620	Putative two-component system sensor kinase protein	Cd	190	1e-13
BH740621	Putative glycerol-3-phosphate dehydrogenase	Cd	277	1e-23
BH740622	Putative sugar ABC transport system membrane protein	Cd	322	6e-29
BH740628	Hypothetical protein DIP1797	Cd	365	6e-34
BH740632	Pyruvate dehydrogenase subunit E1	Cd	331	6e-30
BH740633	5-Methyltetrahydrofolate-homocysteine methyltransferase	Cd	335	2e-30
BH740635	DNA gyrase subunit A	Cd	344	2e-31
BH740638	Hypothetical protein DIP0123	Cd	351	3e-32
BH740642	Putative RNA polymerase sigma factor	Cd	215	7e-17
BH740643	Deoxyguanosinetriphosphate triphosphohydrolase-like protein	Cd	434	4e-42
BH740644	Putative ABC transport system permease protein	Cd	168	3e-11
BH740646	Hypothetical protein DIP0149	Cd	160	4e-10
BH740647	Glutamyl-tRNA synthetase	Cd	364	9e-34

Cd = Corynebacterium diphtheriae; Ce = C. efficiens; Cg = C. glutamicum; Cj = C. jeikeium; Cp = C. Pseudotuberculosis; GSS = genomic survey sequence.


For an insight into the functional diversity of our random sequences, we compared our GSSs to the sequences present in the database and derived the functional classification associated with each protein. We found 123 GSSs that could be classified into 17 broad functional categories (Figure 3). Some GSSs were classified into more than one category and thus were included in the "mixed function" group. The largest fraction (28%) was placed in the function unknown group, which includes hypothetical proteins. Other important categories included sequences related to energy production and conversion (11%), DNA replication, recombination and repair (10%) and translation, ribosomal structure and biogenesis (9%).

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

C. pseudotuberculosis bacterial artificial chromosome library

Figure 2. Microorganisms that presented similarity with GSSs generated from the *Corynebacterium pseudotuberculosis* genomic library.

Figure 3. Functional categories of *Corynebacterium pseudotuberculosis* GSSs according to their putative biological functions in the NCBI databases (see http://www.ncbi.nlm.nih.gov).

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

CONCLUSIONS

Our libraries proved to be an important tool for mapping and genome assembly and could be used in a genome-sequencing project. The construction of this genomic library was part of the preparatory work for the Minas Gerais *C. pseudotuberculosis* (strain 1002) chromosome sequencing project, which will be initiated this year (2006).

ACKNOWLEDGMENTS

Research supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil), FINEP (Financiadora de Estudos e Projetos - 01.04.760.00), and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brazil).

REFERENCES

- Amemiya CT, Zhong TP, Silverman GA and Fishman MC (1999). The zebrafish, genomics and genetics. In: Methods in cell biology (Detrich W, Westerfield M and Zon L, eds.). Academic Press, New York, 235-258.
- Azevedo V, Alvarez E, Zumstein E, Damiani G, et al. (1993). An ordered collection of *Bacillus subtilis* DNA segments cloned in yeast artificial chromosomes. *Proc. Natl. Acad. Sci. USA* 90: 6047-6051.
- Battistoni F, Bartels D, Kaiser O, Marie Reamon-Buettner S, et al. (2005). Physical map of the *Azoarcus* sp. strain BH72 genome based on a bacterial artificial chromosome library as a platform for genome sequencing and functional analysis. *FEMS Microbiol. Lett.* 249: 233-240.
- Birnboim HC and Doly J (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res.* 7: 1513-1523.
- Brodin P, Eiglmeier K, Marmiesse M, Billault A, et al. (2002). Bacterial artificial chromosome-based comparative genomic analysis identifies *Mycobacterium microti* as a natural ESAT-6 deletion mutant. *Infect. Immun.* 70: 5568-5578.
- Brosch R, Gordon SV, Billault A, Garnier T, et al. (1998). Use of a *Mycobacterium tuberculosis* H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. *Infect. Immun.* 66: 2221-2229.
- Capela D, Barloy-Hubler F, Gatius MT, Gouzy J, et al. (1999). A high-density physical map of *Sinorhizo-bium meliloti* 1021 chromosome derived from bacterial artificial chromosome library. *Proc. Natl. Acad. Sci. USA* 96: 9357-9362.
- Celestino PBS, Carvalho LR, Freitas LM and Dorella FA (2004). Update of microbial genome programs for bacteria and archaea. *Genet. Mol. Res.* 3: 421-431.
- Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, et al. (2006). *Corynebacterium pseudotuberculosis:* microbiology, biochemical properties, pathogenesis and molecular studies of virulence. *Vet. Res.* 37: 201-218.
- Feng Z, Qi J, Tsuge T, Oba Y, et al. (2005). Construction of a bacterial artificial chromosome library for a *myxobacterium* of the genus *Cystobacter* and characterization of an antibiotic biosynthetic gene cluster. *Biosci. Biotechnol. Biochem.* 69: 1372-1380.
- Gordon SV, Brosch R, Billault A, Garnier T, et al. (1999). Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. *Mol. Microbiol.* 32: 643-655.
- Grant SG, Jessee J, Bloom FR and Hanahan D (1990). Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. *Proc. Natl. Acad. Sci. USA* 87: 4645-4649.
- Kelley JM, Field CE, Craven MB, Bocskai D, et al. (1999). High throughput direct end sequencing of BAC clones. *Nucleic Acids Res.* 27: 1539-1546.
- Philipp WJ, Nair S, Guglielmi G, Lagranderie M, et al. (1996). Physical mapping of *Mycobacterium bovis* BCG Pasteur reveals differences from the genome map of *Mycobacterium tuberculosis* H37Rv and from *M. bovis*. *Microbiology* 142 (Pt 11): 3135-3145.
- Redenbach M, Scheel J and Schmidt U (2000). Chromosome topology and genome size of selected actino-

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br

mycetes species. Antonie Leeuwenhoek 78: 227-235.

- Ripoll PJ, O'Sullivan DM, Edwards KJ and Rodgers M (2000). Technique for cloning and sequencing the ends of bacterial artificial chromosome inserts. *Biotechniques* 29: 271-276.
- Rogel-Gaillard C, Bourgeaux N, Billault A, Vaiman M, et al. (1999). Construction of a swine BAC library: application to the characterization and mapping of porcine type C endoviral elements. *Cytogenet. Cell Genet.* 85: 205-211.
- Shizuya H, Birren B, Kim UJ, Mancino V, et al. (1992). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in *Escherichia coli* using an F-factor-based vector. *Proc. Natl. Acad. Sci. USA* 89: 8794-8797.
- Simon MI (1997). Dysfunctional genomics: BACs to the rescue. Nat. Biotechnol. 15: 839.
- Tauch A, Homann I, Mormann S, Ruberg S, et al. (2002). Strategy to sequence the genome of *Corynebac*terium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J. Biotechnol. 95: 25-38.
- Tauch A, Kaiser O, Hain T, Goesmann A, et al. (2005). Complete genome sequence and analysis of the multiresistant nosocomial pathogen *Corynebacterium jeikeium* K411, a lipid-requiring bacterium of the human skin flora. *J. Bacteriol.* 187: 4671-4682.
- Tillett D and Neilan BA (1998). Small-scale preparation of the single-copy bacterial artificial chromosome vector pBeloBAC11. *Biotechniques* 24: 568-572.
- Walter J, Mangold M and Tannock GW (2005). Construction, analysis, and beta-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl. Environ. Microbiol. 71: 2347-2354.
- Woo SS, Jiang J, Gill BS, Paterson AH, et al. (1994). Construction and characterization of a bacterial artificial chromosome library of *Sorghum bicolor*. *Nucleic Acids Res.* 22: 4922-4931.
- Zhang HB and Wing RA (1997). Physical mapping of the rice genome with BACs. *Plant Mol. Biol.* 35: 115-127.
- Zhang HB, Woo SS and Wing RA (1996). BAC, YAC and cosmid library construction. In: Plant gene isolation: principles and practice (Foster GD and Twell D, eds.). John Wiley & Sons Ltd., Chichester, West Sussex, England, 75-99.
- Zhao S (2000). Human BAC ends. Nucleic Acids Res. 28: 129-132.

⁶⁶³

Genetics and Molecular Research 5 (4): 653-663 (2006) www.funpecrp.com.br