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ABSTRACT. To study rapidly evolving male specificY (MSY) genes
we retrieved and analyzed nine such genes. VCY, HSFY and RBMY
werefound to have functional X gametologs, but the rest did not. Using
chimpanzee orthologs for XKRY, CDY, HSFY, PRY, and TSPY, the
average silent substitution is estimated as 0.017 + 0.006/site and the
substitution rate is 1.42 x 10¥/site/year. Except for VCY, al other loci
possess two or more pseudogenes on the Y chromosome. Sequence
differences from functional genes show that BPY 2, DAZ, XKRY, and
RBMY each have one pseudogene for each one that is human specific,
while others were generated well before the human-chimpanzee split,
by means of duplication, retro-transposition or transl ocation. Somefunc-
tional MSY gene duplication of VCY, CDY and HSFY, as well as X-
linked VCX and HSFX duplication, occurred in the lineage leading to
humans; these duplicates have accumulated nucl eotide substitutions that
permit their identification.

Key words: Substitution rate, Divergencetime, Pseudogene, Palindrome,
Evolutionary mechanism, Ma eness
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INTRODUCTION

The “eccentric” Y chromosome is about half the size of X; it accommodates a few
dozen genes. Some of them are house-keeping genes, and some are tissue specific. Previoudly,
it was thought that human sex was determined by environmental factors, but now it isclear that
Xand distributionisthekey factor for sex determination (Ohno, 1967). Thefinding of relics of
pseudo-autosomal regions, X counterparts and distinct non-recombining (NRY) regions are ex-
plicit signsof stepwiseY evolution. AstheY isfound only inthemale, and it has distinct NRY
regions, it can be easily deduced that NRY has some genes that have function only in males or
are adverse for females. It istherefore of interest to know the origin of such genes. According
to Sykes(1980), theY chromosomewill become extinct within 5,000 generationsif the shrinking
in size continues. Why isthe Y short? Mutation isthe agent; it accumulatesin the NRY region,
and consecutively some genes have | ost functions; these nonsel ective constraints were knocked
out by a series of deletion, resulting in the current puny Y. This mutation rate is theoretically
constant lineage-to-lineage, and it is either globally or locally clock (Zuckerkandl and Pauling,
1965; Takahata and Satta, 1997) pursed. Using this concept and DNA sequence analysis, evo-
lution can be speculated on more accurately. Relatively small and large numbers of sequence
differencesimply that divergence happened recently or along time ago, respectively (Karin and
Lahn, 2001). NRY constitutes about 95% of the length of the Y chromosome, and it harbors 12
novel genes, including seven that are testis specific (Jegalian and Lahn, 2001). Rozen et al.
(2003) found abundant recombination in the NRY region, and they were therefore prompted to
give anew name: male-specific region (MSY) inside the NRY. Skaletsky et al. (2003) found
nine testis-specific genes in the MSY; al of them are in palindromes; however, Reijo et al.
(2000) found one gene (DAZ) that was not palindromic. For evolutionary reasons, the'Y chro-
mosome had been thought to be afavored site for genes involved in spermatogenesis (Fisher,
1931). Genes that drive sperm production evolve unusualy rapidly, presumably dueto fierce
rivalry (Metz and Palumbi, 1996; Ting et al., 1998; Wyckoff et al., 2000).

In order to understand the mode of evolution of MSY genes, we focused on nine such
gene families, XKRY, VCY, CDY, HSFY, PRY, BPY 2, DAZ, TSPY, and RBMY.

XKRY hastwo identical functional copiesthat are expected to be more centromericin
location (Skaletsky et al., 2003). The only known active X and Y gene homolog isVCY (Lahn
and Page, 1999a). X contains four paralogsand Y contains two, suggesting X, Y clusters cre-
ated by aduplication event (Fukumai et al., 2000). The CDY geneistestis specific, with multiple
copieson'Y and no X homolog (Skaletsky et al., 2003). No Y ortholog has been found in any
non-primate or even in prosimians, suggesting that it moved to the primate Y recently (Lahn and
Page, 1999b). Ancther study (Saut et al., 2000) found CDY 1 and CDY 2 to be two different
genes, based on blot analysis. The HSFY geneis marked (Skaletsky et al., 2003) as M SY, with
two functional copies, whereas L ahn and Page (2001) did not include thisgeneintheir 12 novel
NRY genes. They also did not find any X homolog. So, whether HSFY isMSY or not is still
unknown. Threeidentical copiesof PRY genewere found on the human 'Y, with an expectation
of more telomeric copies (Lahn and Page, 2001). On the other hand, Vogt et al. (1996) found
PRY 1 and PRY 2 to be two different genesin the AZFb region. While, according to Karin and
Lahn (2001), PRY 1 and PRY 2 are aternatively spliced. Therefore, the position, number and
phylogeny of this gene are still not resolved. Previously the BPY gene was recognized as the
VCY gene. But now the BPY 2 gene has been identified as adistinct gene, with itsthree nearly
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identical copies. DAZ genes are considered as testis specific (Lahn and Page, 2001), with
multiple copies (Stouffs et al., 2001); four copies were found by Saxena et al. (2000) and
Skaletsky et al. (2003), organized into two clusters in the AZFc region of Y. Doubling of the
DAZ genestook place approximately 50,000 to 200,000 years ago in the hominid Y (Agulnik,
1998; Howard, 2002). This gene was solely indicated as the candidate for the azoospermia
factor. However, Agulnik (1998) found that DAZ haslittle or no rolein spermatogenesis. They
also indicated that exons and introns of DAZ are evolving with neutral genetic drift (Kimura,
1968) and without selective pressure. Inthe TSPY multi-genefamily, which isacandidatefor a
factor that promotes gonadoblastoma formation, Arnemann et al. (1987) and Delbridge et al.
(2004) found 35 copiesin theamplicon region of thisgene. RBMY consists of approximately 30
genes and pseudogenes, found on both arms of the Y chromosome. RBM X retains a widely
found function, and it evolved with amal e-specific function in spermatogenesis. Maet a. (1993)
and Saxenaet al. (1996) found six functional copiesinthe pal 3 and inverted repeat regionsand
26 pseudogenes. Delbridge and Graves (1999) suggested that RBMY and RBM X evolved from
agene on the mammalian proto-X and -Y pair, at least 130 million years ago, before the diver-
gence of eutherian and metatherian mammals.

MATERIALAND METHODS

Human copies were retrieved from the NCBI BLAST and the Pseudogene.org data-
bases. Orthologous chimpanzee copies were obtained from NCBI Homologene; whenever no
deposited sequence was found in NCBI, then orthologous bac clones were obtained from the
DDBJdatabank. Clustal W (Thomson et a., 1994) and Graph alignment (http://darwin.nmsu.edu/
cgi-bin/graph_align.cgi) were used to align homol ogous regions. MEGA -2 software (Kumar et
al., 2001) and the neighbor joining method (Saitou and Nei, 1987) were used to estimate distances
and devel op the phylogenetic tree. The EMBL databank was used for the expression record. The
human-chimp divergence time (DT) was obtained from the fossil record (Stewart and Disotell,
1998). By using orthologous distances and the fossil record (DT), average rates for specific genes
were estimated individually by the formula: rate = (Dis (distance)/2T (time))/sitelyear. By using
theseaveragerates, DT of human paral ogswas estimated by theformulaDT = (Dig/2 x rate) million
years ago (mya). Gene Atlas and Gene Card were used to obtain the specific function of the genes.
ABI Online analysis tools (EBI) for GC content observation (Williams, 2000) were used to find
SNPsbetween nearly identical sequencesand tandem repeatsanaysis(Benson, 1999). TheHovergen
family (http://pbil.univ-lyonl.fr/cgi-bin/acnuc-link-ac2fam?db=Hoverprot& query=014609) was
used to retrieve coding sequence (CDS) regionsfrom different lineages. Dot plot analysis (Pustell
and Kafatos, 1982) was performed for large-scale sequence comparison. Window analysis
(Maizel and Lenk, 1981) wasdonefor region by region sequence comparison. BLAST2 (Altschul
et a., 1997), GeneMIT (Burge and Karlin, 1997), Grail (http://darwin.nmsu.edu/cgi-bin/
graph_align.cgi) and NCBI model makers were used to obtain putative gene structures.

RESULTS

All the genes had orthologous Y copiesin the chimp, except BPY 2, DAZ and RBMY.
Chimp orthologs had 0.017 + 0.006 substitutions/site on average difference compared to those
of humansfor MSY genes. Thisestimation is very similar to that of Ebersberger et al. (2002),
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who used only non-repeated regions of NRY. Based on the average difference, we attempted to
estimate rate, giving 1.4 x 10° substitutions/site/year. AsDAZ, BPY 2 and RBMY do not have
chimp orthologs, we used the average rate from the present study and the estimation of the
study of Kumar and Hedges (1998) to estimate their DT. In other cases, to estimate the DT of
the paralogs for individual genes, we used their specific rate (Table 1). DT estimation for all
human MSY paralogs are shown in Table 2. Human paralogs of XKRY, CDY, HSFY, BPY 2,
PRY, DAZ, TSPY,andRBMY gave 12, 60, 15, 16, 53, 0, 11, and 20% (functional to pseudogene)
divergence on average, respectively. DT (mya) of the above order of genes ranged from 0 to
42,0t00,0t0251,0t0153,0t0162,0t035,0t00.17,2to 31, and 0to 221 (Table 2). Thus, we
can infer that XKRY splitting started off at the mouse-rat divergence period, VCY and DAZ
within the human lineage, CDY and RBMY at the Aves-Crocodilia divergence period, HSFY
and BPY 2 at the human-marsupial divergence period, and PRY and TSPY at the mouse-rat
divergence period, according to the molecular time scale of Nachman et al. (1998). We re-
trieved functional and pseudogene copy numbers for all MSY genes (Table 1). Correlation
between physical distances and pair-wise distances was very weak, except for the VCY gene
(Table 1). Among pseudogenes, maximum was for reduced length and shuffled exons. Some of
them are predicted as processed pseudogenes (Figure 1). Some palindromic regionswere found
as new and some were considered as off-target (Figure 2). Some MSY genes showed tendency
for rearrangement towards non-Y chromosomes to maintain maleness despite Y extinction.
Selective pressure was found to be absent among different mammalian lineages (only available
in NCBI and Homologene and DDBJ databases (accessed April 18, 2005)).

DISCUSSION
XKRY

No homologous functional copy was found either in humans or in other primates. So,
we can think that this gene may be human and Y specific. Lahn and Page (2001) found two
functional copies, whereas we found only one. One copy found by Lahn and Page (2001) we
found to be a pseudogene, due to a single-base insertion. Identical copies are adjacent; these
were inferred to be originated by a duplication event. One pseudogene, which wasisolated and
distantly located, but identical, apparently was atranslocation after duplication. We found two
functional copies outside of palindromes 4 and 5, while Lahn and Page (2001) found them on
palindromes 4 and 5. We found eight pseudogenes, while Lahn and Page (2001) found six.

VCY

The functional copies are identical and oppositely directed, so, it can be inferred that
they were duplicated and inverted very recently. We found three X homologs, different what
were found by Fukumai et al. (2000). X copies are tandemly repeated (VCX-2r, VCX-8r and
VCX-10r). Another hypothetical X homolog (L oc401578) was found which has 6 repeats, and
aternatively spliced with VCX-10r. All X copies showed around 1% divergence among them on
averageand 1.7%from'Y copies(silent sitesare only considered). Using Nachman et al. (1998)
rate (who estimated the rate by using seven human X geneintrons), the DT of VCX copieswas
estimated (Table 2). Two'Y copies showed 100% identity in their genic region aswell asintheir
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Figure 1. Exon-intron structure with respect to inferred mechanism.

long flanking regions, indicating region duplication. Based on this long identity and inverted
orientation, thisregion can also be considered anew palindrome (about 15to 16 MB). AsVCX
and VCY copies have different substitution rates for evolutionary reasons, we refrained from
making estimations of when X and Y clusters are diverged.

CDY

According to the present study, CDY 1 and CDY 2 have a 6.4% difference in the non-
coding region, and their functionsare also different. CDY 1 hasfour functional copieslocated on
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Figure 2. Dot plot analysis of questionable palindromes 1 and 3.

palindromesfour and one. CDY 2 hastwo copies and both are located on palindrome four. This
finding differs from that of Lahn and Page (2001) who found CDY as one gene, with four
functional copiesand located on palindromes5and 1. Our CDY 1 copiesdiffer fromtheorigina
copy only by non-coding differences, but their CDSs were 100% identical and they were lo-
cated on palindromes 4 and 1. CDY 2 has two 100% identical copies on palindrome 4. We
retrieved 14 pseudogenes, whereas Lahn and Page (2001) found 27 pseudogenes. Saut et al.
(2000) found two different CDY genes, which was also concluded in the present study. How-
ever, they did not indicate any pseudogenes. Based on the DT (Table 2), human Y paralog
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Figure 2. Continued.

duplication started during the Aves-Crocodilia divergence period. We found some functional
domainsin bacterial lineages, different from what was found by Lahn and Page (2001). They
also indicated that two Y copies have no introns, but we found that CDY 1 has an intron sur-
rounded by two exons and that CDY 2 has only one exon. We found two functional copies that
diverged 4.6 mya. One X copy was found to be a pseudogene. It was observed that autosomal
copies are multi-exonic, whereas'Y copies are mono-exonic and di-exonic, indicating that the
CDY genetranslocated in Y by exon shuffling or by other unknown exon-reducing events. In
addition, autosomal copies are ubiquitously expressed, whereas Y copies are only testis ex-
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pressed. So, obviously, it can be said that CDY isattracted by Y, which isbeneficial for male or
harmful for female.

HSFY

Two'Y copieswere found outside of palindrome 4, while Skaletsky et al. (2003) found
two copieson palindrome 4. They also stated that there were no pseudogenesfor this gene, but
we found five. HSFY 1 is 100% identical with HSFY 2 up to its 2nd exon. But they are not
aternatively spliced. Four pseudogenes are adjacent, so they may have originated by aduplica
tion event. One copy isisolated; it can be assumed to be a transl ocation event.

PRY

Wefound functional copiesinthe palindrome 1, IR region and the edge of palindrome 3.
Sothelack of complimentary copiesin the respective palindromes, palindromic regionsof palin-
dromes 1 and 3, which was reported by Lahn and Page (2001), is questionable. We also found
different numbers of functional and pseudogene copies.

BPY2

Two functional copieswerefound by Lahn and Page (2001), while wefound them to be
pseudogenes. They arelocated on the right arm of palindrome 1, and the functional copy ison
theleft arm of palindrome 1. Again continuously spreaded palindrome 1 is confusing.

DAZ

Reijo et al. (1995) and Chen and Li (2001) found one pair on palindrome 2 and another
pair on palindrome 1. We found that DAZ4 and DAZ1 are functional genes and that they are
oppositely directed. Two functional DAZ genesare 100% identical, and they are located on the
left arm of palindrome 1, inversely, and two pseudogenes that we found arelocated on theright
arm of palindrome 1. Orientation of both couples again raised the question of a contiguous
region of palindrome 1.

TSPY

Arnemann et al. (1987) found 35 functional copiesin the ampliconic region, with five
pseudogenes. We found two functional copies near the IR3 region and five pseudogenes.
Pseudogenes are discretely located, although distant copies have higher similarity than close
neighbors. So, the mechanism of their origin requires further observations.

RBMY

We retrieved two functional copies (in palindrome 3 and in the IR region) and nine
pseudogenes of RBMY in the human 'Y, different from what was found by Inglis et al. (1993).
We also found two chimp functional copies but they are showing to be highly diverged from
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human-chimp DT. So, we did not consider them as orthol ogsto estimate evolutionary rates. As
we could not consider chimp copies as orthologs, we used the average rate to estimate the DT
of human paralogs. As palindromes 1 and 3 seem to be confusing, we analyzed these regions by
dot plot to determine similarity, showing that very small regions have long diagonals, and that
long regions are not continuously palindromic (Figure 2).

Generally speaking, wefound that MSY genesare evolving in aneutral manner intheir
non-coding regions. Based on all available homologous CDS copies from human, chimp, ma-
caw, and the mouse it was found that except for human DAZ, al accessible lineages show
either neutral evolution or accel erated synonymous substitution (Table 1). In the case of CDY,
Mus muculus shows some positive selection, but due to statistical error we could not make
specific conclusions. MSY genes have been found to have somewhat greater sequence differ-
encesthan X and autosomals (Chen and Li, 2001). This can be explained as male-driven evolu-
tion (Miyataet al., 1987).

However, when we examined chimp orthologs, it was found that VCX and RBMX
genes have greater differences than those of their Y homologs. ThisisbecauseVCX copiesare
repeated by 10, 8, 6, and 2 nucleotides, along with increased GC content. The RBM X gene has
78 T repeats, 2 TTGC repeats and 3 GA repeats, along with 3 SNPs within its very short
sequence. Differencesin GC contents might also result in larger sequence differences. Palin-
dromic regions were considered from the NCBI map, according to Lahn and Page (2001),
which was specially designed for the MSY region (P1: 23.30t0 26.25 M, P2: 23.0t0 23.30 M,
P3: 21.851t0 22.60 M, P4: 18.32t0 18.74 M, P5: 17.32 to 18.32 M, P6: 16.07 to 16.33 M, P7:
15.79t0 15.81 M, P8: 13.90 to 13.98 M). All of the genes that we examined (only functional
copies) gave displaced positions (Figure 3) compared to the previous study made by Lahn and
Page (2001). Some pseudogenes did not have introns, but their consonant functional copy/
copies did, which can be explained by pseudogene processing caused by retro-transposition.
But, as most annotations were found in mRNA, and some exons were split in the BLAST hit,
we cannot yet classify them as pseudogenes. We could not classify XKRY, CDY, BPY 2, PRY,
TSPY, and RBMY genes as MSY. In other cases, some have either X (VCX, HSFX, CDX) or
autosomal (CDYL, DAZL) homologs, or both. VCX and DAZL have greatest expressioninthe
testis. Therefore, we classified VC and DAZ genes as male specific, but not MSY. The func-
tion of the HSFX copiesis still unknown. So, we could not classify HSFY. In al cases, except
for XKRY, pseudogene-pseudogene DT was less than that of functional-pseudogenes. Most
pseudogenes may have originated from other pseudogenes, either through duplication or con-
version, or by other unknown events. Positions and orientation of human paralogsare shownin
Figure 4. Furthermore, functional-functional copies have less divergence. So, it can be pre-
sumed that functional genes produce functional genes and pseudogenes produce pseudogenes
more frequently than functional to pseudogene production (Table 2). At ailmost all loci, wefound
that pseudogenes are reduced in length when compared to their functional copies (Figure 1).
According to Varsity (http://www.varsity.co.uk/index.php?option=com_content& task=
view& id=7324& Itemid=27), the Y chromosomewill be extinct within about 125,000 years. So,
how will males continue? In therodent, the Mole Vole, thereisno Y, but the male still exists. So,
if homologous MSY copies are acquired by other chromosomes and these promote male func-
tions, male’'s existence is possible. That is why we examined whether MSY genes have male-
specific expression on their non-Y counterpartsin humans. We a so found that VCX copiesare
mal e specific, and no mammalian lineages have VCX homologs. This can beinferred asVCX
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Figure 3. Locations of MSY paralogs and their comparison with previous study by Skalestsky et al., 2003.

copies are relocated from Y. To provide evidence, we estimated the DT of VCX and VCY
copies by using the X ratefrom Nachman et a. (1998) and the Y rate from our study, along with
the human autosomal rate from Chen and Li (2001). In all cases, the prediction was that V CX
and VCY copies originated within the primate lineage. But as we did not find any VCX ho-
mologsin mammals, we propose that this copy translocated in the human X to maintain male-
nessin humans, in the face of Y extinction. We also checked the flanking regions of VCX and
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Figure 4. Locus map of human MSY paralogs.

VCY copies, but they werevery dissimilar, asVCY flankswerefound to be 100% similar, while
corresponding X copies had no similarity. So, we cannot consider that transl ocation occurred
through unequal crossing over. If only the gene wastranslocated, our inferenceismorelogical.
This assumptionisabit different from that of Fukumai et al. (2000). We think that duplication
occurred in 'Y and then translocated onto X to maintain male existence. But, Fukumai et al.
(2000) suggested that X, Y copies originated by aduplication event.

The function of HSFX gene copies is still unknown. But several copies are found on
chromosomes 16, 17, 21, 4, 6, 7, and 8 (partial CDS), successively. These non-Y copies might
have mal e-specific functions, supporting our argument. Some TSPY homologs, TSPYL1toL6
are located on chromosomes 6, X, 20, 6, 8, and 2, respectively, in humans, with yet unknown
expression. We also found some TSPY L testis-expressed homologsin the mouse, rat and chimp
(partial CDS). In the chimp, L5 is aso on chromosome 8, as in humans, in the Norway rat on
chromosome 7, and in the mouse on chromosome 15. L1 is found on chromosome 10 in the
mouse, whereasit is on chromosome 6 in humans. So, except for L5 in the chimpanzee, other
homol ogs show a tendency towards chromosome changing. As all of the non-Y-linked TSPY
members seem to be functional (partial CDS but no stop codon), at least some of them might
have testis expression (expression yet unknown). DAZL, which istestis specific, islocated in
human on chromosome 3. Another DAZ homolog (LOC 460209), which was isolated from
chimpanzee chromosome 3, is also testis specific. Chromosomes 10 and 17 in the mouse and,
chromosomes 4 and 7 in the rat have testis-specific DAZ orthologs. So, non-Y chromosomes
also have testis-expressing copies and have a propensity for position changing. So, it can be
presumed that it is possible that other chromosomes will acquire male-specific properties after
the extinction of Y. Aslittleinformation is currently available, it is nearly impossible to make
concrete conclusions about whether mal e-specific characters change with location. However,
in the case of VC, DAZ and TSP, we strongly suggest that such changes occur.
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Although the prediction of processed pseudogenesisdifficult, we considered four pro-
cessed pseudogenesin CDY, two in BPY 2, two in PRY andtwo in RBMY (Figure 2), whereas
Lahn and Page (2001) gave no evidence for processed pseudogenes for MSY genes. We aso
observed exon shuffling and length reduction in pseudogenes, in comparison with their func-
tional copies. We specul ate that the M SY regionis still being reduced.

Apparently, exon shuffling, gene duplication, retro-transposition, and chromosomal re-
arrangements al have played important rolesin the evolution of the MSY gene.
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