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ABSTRACT. All organisms that have been studied until now have been
found to have differential distribution of simple sequence repeats (SSRs),
with more SSRs in intergenic than in coding sequences. SSR distribution
was investigated in Archaea genomes where complete chromosome
sequences of 19 Archaea were analyzed with the program SPUTNIK
to find di- to penta-nucleotide repeats. The number of repeats was de-
termined for the complete chromosome sequences and for the coding
and non-coding sequences. Different from what has been found for other
groups of organisms, there is an abundance of SSRs in coding regions of
the genome of some Archaea. Dinucleotide repeats were rare and CG
repeats were found in only two Archaea. In general, trinucleotide repeats
are the most abundant SSR motifs; however, pentanucleotide repeats
are abundant in some Archaea. Some of the tetranucleotide and penta-
nucleotide repeat motifs are organism specific. In general, repeats are
short and CG-rich repeats are present in Archaea having a CG-rich
genome. Among the 19 Archaea, SSR density was not correlated with
genome size or with optimum growth temperature. Pentanucleotide den-
sity had an inverse correlation with the CG content of the genome.
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INTRODUCTION

Microsatellites, also named simple sequence repeats (SSRs), are widespread through-
out eukaryote, prokaryote and virus genomes. SSR frequency and distribution are species and
motif specific (Karlin et al., 1997; Bachtrog et al., 1999, 2000; Butcher et al., 2000; Crollius et
al., 2000; Metzgar et al., 2000; Toth et al., 2000; Gentles and Karlin, 2001; Morgante et al.,
2002). Mechanisms for SSR genesis include transpositions, insertions, horizontal gene transfer,
recombination and repair, in addition to slippage during replication (Primmer and Ellegren, 1998;
Hancock and Santibanez-Koref, 1998; Hartenstine et al., 2000; Chambers and MacAvoy, 2000;
Schlotterer, 2000; Jakupciak and Wells, 2000; Zhu et al., 2000; Alba et al., 1999a,b, 2001).
However, repeat expansions may be orientation or strand specific and may be independent of
the efficiency of the repair system (Morel et al., 1998; Cleary et al., 2002). Since there appears
to be similarity in these findings in prokaryotes and eukaryotes, the method of repeat generation
apparently has not changed with time (Achaz et al., 2002). Comparative SSR distribution in the
Archaea has not been studied in detail until now; studies have been restricted to repeats other
than SSRs (Cox and Mirkin, 1997; Karlin et al., 1997; Smith et al., 1997; Fitz-Gibbon et al.,
2002). Study of SSR profile in the Archaea is appealing, because they are enigmatic organisms
occupying diverse habitats, including extreme environments. Although they have similarities
with eubacteria and eukaryotes, the presence of unique features in the Archaea has maintained
the debate over whether they are intermediates or ancestors of both pro- and eukaryotes (Woese
et al., 1990; Doolittle, 1995; Zlatanova, 1997; Makarova and Koonin, 2003). The genome se-
quence data that are now available make it possible to conduct a comparative analysis of SSRs.
SSR density and motif types in complete sequences of the main chromosome of 19 Archaea
were examined and compared.

MATERIAL AND METHODS

The main chromosome sequences of 19 Archaea (Table 1) were downloaded from the
NCBI database (www.ncbi.nlm.nih.gov). Complete chromosome sequences were used for
analysis, without removing r-RNA or t-RNA sequences. Plasmid sequences were not included
in the analysis. Tandem repeat tracts (dinucleotide to pentanucleotide) were obtained by analyz-
ing complete sequences with the program “SPUTNIK” (C. Abajian, University of Washington,
http://www.abajian.com/sputnik) with some modifications to accommodate the analysis of larger
sequences, which was not possible with the original version. More recently, the site link to
SPUTNIK changed to http://espressosoftware.com/pages/sputnik.jsp, after this study was com-
pleted.

The density of SSRs was calculated by dividing the number of SSRs by the total se-
quence length of the main chromosome. Density in the coding (m-RNA, t-RNA and r-RNA)
and non-coding regions was calculated by dividing the number of SSRs by the total coding
sequence and intergenic sequence lengths, respectively. Total coding sequences were taken
from protein and RNA tables of the NCBI database for each organism. Overlapping sequences
in coding regions were removed for calculating the total coding sequences. The term “Horizon”
applies to SSRs found partially in the intergenic region and partially in the coding region and
because of uncertainty whether they lie in untranscribed or untranslated regions (UTR). These
SSRs were considered in the calculation of total SSR density but not in coding and intergenic
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regions. I only included simple sequence repeats, classified as microsatellites.
The search was also limited to di-, tri-, tetra- and pentanucleotide repeats. All possible

combinations of repeats were grouped together. For example, (AC)n, (CA)n, (GT)n, and (TG)n
in the case of dinucleotide repeats and (CCG)n, (GCC)n, (CGG)n, and (GGC)n in the case of
trinucleotide repeats were grouped together, even though these groupings may result in losing
information about amino acid preferences in the coding region. To determine repeat length, the
total number of base pairs of an SSR was counted. For example, for the dinucleotide CG repeat
“CGCGCGCGCGCG”, the length was calculated as 12 bp. The average total length thus ob-
tained for each motif and repeat class was used for statistical analysis.

Pearson correlation analysis (two-tailed) using Microsoft Excel functions was used to
examine the correlation of SSR density with chromosome size, CG content of the genome,
optimum growth temperature (OGT), repeat length, and repeat CG richness. Archaea OGTs
were obtained from the Prokaryotic Growth Temperature database “http://pgtdb.csie.ncu.edu.tw/”
(Table 1). Archaeoglobus fulgidus, which was classified as a thermophile in the database, was
grouped as a hyperthermophile in the present study because the OGT lies in this range.

RESULTS

Density of SSR and most common motifs in the genome

The complete main chromosome sequences (henceforth referred to as genomes) of 19
Archaea revealed diversity in the distribution of SSRs, with densities ranging from 0.1504/kbp in

Tabel 1. List of Archaea, with chromosome size, environment group and optimum growth temperature (OGT).

Organism Chromosome Environment CG-genome OGT
size (bp) group (%) (°C)

Aeropyrum pernix K1 1,669,695 Hyperthermophile 56.31 93.5
Archaeoglobus fulgidus DSM 4304 2,178,400 Hyperthermophile 48.58 83
Halobacterium sp NRC-1 2,014,239 Thermophile 67.91 50
Methanobacterium thermoautotrophicum DH 1,751,377 Thermophile 49.54 67.5
Methanococcus jannaschii 1,664,970 Hyperthermophile 31.43 85
Methanococcus maripaludis 1,661,137 Mesophile 33.1 40
Methanopyrus kandleri AV19 1,694,969 Hyperthermophile 61.16 98
Methanosarcina acetivorans C2A 5,751,492 Mesophile 42.68 35
Methanosarcina mazei strain Goe1 4,096,345 Mesophile 41.48 35
Nanoarchaeum equitans 490,885 Hyperthermophile 31.56 90
Picrophilus torridus 1,545,900 Thermophile 35.97 60
Pyrobaculum aerophilum 2,222,430 Hyperthermophile 51.36 100
Pyrococcus abyssi 1,765,118 Hyperthermophile 44.71 96
Pyrococcus furiosus DSM 3638 1,908,256 Hyperthermophile 40.77 100
Pyrococcus horikoshii 1,738,505 Hyperthermophile 41.88 98
Sulfolobus solfataricus 2,992,245 Hyperthermophile 35.79 87
Sulfolobus tokodaii 2,694,756 Hyperthermophile 32.79 80
Thermoplasma acidophilum 1,564,906 Thermophile 45.99 59
Thermoplasma volcanium 1,584,804 Thermophile 39.92 60
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Halobacterium to 0.0059/kbp in M. kandleri (Appendix 1 and Figure 1). Among SSRs, tri-
nucleotide repeats (ACG, CAG, CGC, CCG, and AGC in particular) have the highest density
(Appendix 1). SSRs are present in coding and non-coding regions of all Archaea. Archaeoglobus
fulgidus, M. kandleri, P. abyssi, P. horikoshii, and Halobacterium have higher densities of
repeats in coding sequences than in non-coding regions (Figure 2).

Figure 1. Total simple sequence repeat (SSR) density in Archaea genome.

Dinucleotide repeats were found in most of the Archaea genomes, except in A. pernix,
A. fulgidus, M. maripaludis, N. equitans, P. furiosus, and P. horikoshii and in the coding
regions of M. thermoautotrophicum (Appendixes 1 and 2 and Figures 3 and 4). Dinucleotide
repeats were found to be abundant in non-coding regions as compared to coding regions (Ap-
pendix 2 and Figures 4 and 5). AT repeats were most common, followed by AG repeats in the
total genome as well as in coding and non-coding regions. AC repeats were not common and
CG repeats were rare.

Trinucleotide repeats in the total genome outnumbered all other repeats in almost all of
the Archaea genomes, except M. jannaschii, P. abyssi, P. furiosus, P. horikoshii, and M.
maripaludis, where pentanucleotide repeats were more frequent than trinucleotide repeats
(Figure 3). Most of the Archaea genomes have AAT and AAG mofits. Coding regions of
most Archaea have AAG mofit and non-coding regions have AAT mofits (Appendixes 1
and 3). In coding regions, AAT was the most abundant repeat in N. equitans, P. torridus and
S. solfataricus. AAG was the most abundant repeat in M. thermoautotrophicum, M.
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Figure 2. Total simple sequence repeat (SSR) density in coding and non-coding regions in Archaea genome.

Figure 3. Total simple sequence repeat (SSR), di-, tri-, tetra- and pentanucleotide densities in Archaea genome.
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Figure 4. Total di- tri-, tetra- and pentanucleotide simple sequence repeat (SSR) density in coding regions.

Figure 5. Total di-, tri-, tetra- and pentanucleotide simple sequence repeat (SSR) density in non-coding regions.
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maripaludis, M. acetivorans, M. mazei, P. abyssi, P. horikoshii, S. tokodaii, T. acidophi-
lum, and T. volcanium. AGC in Halobacterium, AGA in M. jannaschii, AGG in M.
kandleri, CCG in P. aerophilum, and ATC in P. furiosus were the most abundant repeats.
Trinucleotide repeats were not present in non-coding regions of M. thermoautotrophi-
cum, M. kandleri, P. abyssi, and P. horikoshii (Appendix 3 and Figure 5). In non-coding
regions, only the ATC repeat was present in A. fulgidus, ATA in N. equitans and AAT in
P. furiosus intergenic regions. CTC was the most abundant repeat in A. pernix and P.
aerophilum, ACT in T. volcanium and CGC in Halobacterium. AAT was the most abun-
dant repeat in M. jannaschii, M. mazei, P. torridus, S. solfataricus, and S. tokodaii.
ATA was the most abundant repeat in M. maripaludis, M. acetivorans and T. acidophi-
lum.

Tetranucleotide repeats were found in the total genome of all Archaea except T.
acidophilum (Appendix 4 and Figure 3). Species-specific repeats include AACT, AATG, AGGC,
and AATC in M. mazei, AAGC and ACAT in A. fulgidus, AGCG and AGGG in A. pernix,
AGTC and CATG in M. acetivorans, ATTG, CCCG, CGAG, CGGC, and CACG in
Halobacterium, and CAAG and CAGG in P. furiosus. These motifs and their respective den-
sities are not shown in Appendixes 1 and 4. AAAT and AAGA were most common repeats, but
some motifs that were found in the total genome were not present in coding regions (Appen-
dixes 1 and 4). AACT, AATC, AATG, ACAT, ATAG, ATTA, ATTG, and CATG were absent in
the coding sequences of all Archaea. Tetranucleotide repeats were not found in intergenic
sequences of A. fulgidus, M. kandleri, N. equitans, P. abyssi, P. furiosus, and P. horikoshii
(Appendix 4 and Figure 5).

All nineteen Archaea were found to have pentanucleotide repeats in the total genome
and coding regions, with diverse pattern prevalences (Appendixes 1 and 5 and Figures 3 and 4).
Out of 84 repeat motifs, AAAAG was common but 58 were Archaea-specific (densities
not shown in Table 2). The pentanucleotide density in coding regions of P. furiosus, P.
horikoshii and M. maripaludis was higher than that of trinucleotide repeats (Figure 4). Non-
coding regions of A. pernix, N. equitans and P. torridus did not have pentanucleotide repeats
(Figure 5).

Horizon region

SSRs were found partially in coding and partially in intergenic regions of 14 Archaea,
among which the most frequent occurrence of SSRs (seven) was in M. jannaschii (Figure 6).
Dinucleotides were not found in the overlapping regions. Halobacterium, M. kandleri, P.
horikoshii, T. acidophilum, and T. volcanium did not have horizon SSRs.

CG richness of SSRs

CG richness of total SSRs, di-, tri- and penta-nucleotide repeats was highest in
Halobacterium. Total SSRs and pentanucleotide repeats had lowest CG richness in M.
maripaludis. CG richness of di- and tetranucleotide repeats was lowest in S. tokodaii, and N.
equitans had the fewest trinucleotide repeats. Since M. kandleri had only one tetranucleotide
repeat (CCGG), it shows 100% CG richness. However, Halobacterium had the second highest
CG richness (Table 3).
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Table 2. Archaea-specific pentanucleotide repeat motifs.

A. pernix ACCCC AGTAG CGATC
A. fulgidus AGACG AGCTC AGGCG
Halobacterium ACGCC ACGGC CACCC CCCGC

CCCGG CGCAG CGCCG CCGCG
CGCGC

M. thermoautotrophicum AGCCC ATCTG CCACC CCATC
CAGTC CCGTC

M. jannaschii AATAC ACTCT CAATG CGAAG
M. maripaludis AAGAC AATTG ATTAC
M. kandleri AAGTG CACGG CCCTC
M. acetivorans AAGGT ACTGC AGCAG ATTCC

CCTGC ATTTC
M. mazei ACAGG AGATA AGCGA ATCAT

CAGCG
P. torridus AACAC AGTAT
P. aerophilum CCTCC
P. abyssi AACCT ACATC
P. horikoshii AAGGG AGATC CAAGG
S. solfataricus AGTTC
S. tokodaii AATCA ACAAT ATACG ATTGG

ATTAG
T. acidophilum CTCTC
T. volcanium AAATC

Figure 6. Simple sequence repeats (SSRs) in horizon region of Archaea.
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Repeat length

Repeats were generally not long in Archaea, as the average minimum repeat length
was 13 bases and the maximum was 20.63 bases (Table 4). Exceptions include M. mazei [164
(AATA), 138 (AAT), 60 (AAAT), 52 (AATG), and 51 (AAG and ATA) bases] and M.
thermoautotrophicum (AGC 39 bp long), which have long repeats. The maximum dinucleotide
repeat was 20 bases (AT in T. acidophilum). The minimum di-, tri- and tetra-nucleotide repeat
lengths were 12 bases. The minimum pentanucleotide repeat length was 15 bases, but long
repeats (35 bases) were found in Halobacterium (CGCAG), M. thermoautotrophicum
(CAGTC), M. maripaludis (AAAAT), M. acetivorans (ATTTC), and M. acetivorans
(AAATA).

DISCUSSION

The finding of 167 repeat motifs indicates that SSRs are not rare in Archaea genomes.
These repeats show species-specific characteristic distributions, as has been reported for many
other organisms (Toth et al., 2000; Rocha and Blanchard, 2002). Although repeat patterns have
been previously studied in Archaea sequences (Morris et al., 1986; Smith et al., 1997; Rocha et
al., 1999), it was not possible to compare those studies with the present one due to the fact that
incomplete sequences were available at that time or there were differences in the sequence
length analyzed and stringent length criteria for repeats in those studies.

Table 3. CG richness of simple sequence repeats (SSRs) and motifs in percentage.

Organism Total SSR Dinucleotide Trinucleotide Tetranucleotide Pentanucleotide

A. pernix 60.66 0 56.76 65.63 67.5
A. fulgidus 54.03 0 53.97 50 55.56
Halobacterium 82.3 87.5 80.97 90 87.14
M. thermoautotrophicum 48.77 0 44.44 29.17 65.45
M. jannaschii 14.9 10 24.36 9.21 13.51
M. maripaludis 13.84 0 30.95 0 8.57
M. kandleri 65.79 0 75 100 60
M. acetivorans 31.73 14.29 37.75 40 24.29
M. mazei 26.93 27.78 31.41 26.14 23.03
N.  equitans 14.08 0 12.82 25 10
P. torridus 15.27 0 18.18 15 11.67
P. abyssi 35.9 50 28.57 35 40
P. horikoshii 33.61 0 33.33 37.5 32.86
P. furiosus 33.85 0 38.89 50 25.71
P. aerophilum 59.81 31.25 69.05 56.25 42.86
S. solfataricus 19.95 0 26.54 11.67 18.18
S. tokodaii 18.94 5.56 27.78 8.33 16.36
T. acidophilum 25.35 16.67 24.44 0 30
T. volcanium 22 16.67 27.78 20 18
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Dinucleotide repeats

Abundant dinucleotide repeats were not found in the Archaea. This is similar to findings
for other organisms (Karlin et al., 1997; Toth et al., 2000). AT repeats were found to be more
frequent than CA/TG repeats in the Archaea, which is consistent with studies in P. aerophilum
and Sulfolobus (Karlin et al., 1997), Aves genome and plants (Primmer et al., 1997; Toth et al.,
2000; Morgante et al., 2002). However, it is contrary to findings in prokaryote and eukaryote
sequences (Campbell et al., 1999) and in Arabidopsis thaliana (Morgante et al., 2002). Karlin
et al. (1997) suggest that AT repeats have the ability to form less thermodynamically stable
DNA duplexes, which are preferred sites for cleavage by RNAase in mRNA and could lead to
inappropriate binding of regulatory proteins. Possibly, these could be the reasons for absence of TA
repeats in some Archaea. Paradoxically, AT repeats could be responsible for increasing DNA flex-
ibility and association with histone-like proteins, resulting in their playing important roles in gene
regulation and chromatin folding (Okonogi et al., 2000). It remains to be investigated whether AT
repeats play similar roles in Archaea. CG repeats are abundant only in Halobacterium, similar to
what was found by Karlin et al. (1997). The absence of CG repeats in most Archaea cannot be
due to methylation-driven mutations alone (Wang et al., 2004). This is because Drosophila,
animal mitochondria and Neurospora lack methylase activity and yet TA are more common
than CG repeats. Therefore, CG dinucleotide deficiency could be due to selective advantage,
given structural constraints related to high stacking energy and chromatin packing (Karlin et al.,
1997; Lerat et al., 2002) or to avoid blocking of transcription (Morris et al., 1986).

Table 4. Repeat length average (bp) and length range (bp)  in Archaea.

Organism Dinucleotide Trinucleotide Tetranucleotide Pentanucleotide Total

Range Average Range Average Range Average Range Average Range Average

A. pernix 0 0 12-27 12.97 12-16 13.5 15-20 15.63 12-27 13.45
A. fulgidus 0 0 12 12 12-20 14 15 15 12-20 13.03
Halobacterium 12 12 12-27 13.16 12-20 12.6 15-35 16.79 12-35 13.26
M. thermoautotrophicum 12 12 12-39 13.33 12-16 12.67 15-35 17.27 12-39 14.18
M. jannaschii 12 12 12-21 13.62 12-16 13.05 15-25 15.27 12-25 14.1
M. maripaludis 0 0 12-18 13.07 12 12 15-35 17.14 12-35 15.24
M. kandleri 12 12 12-18 13.5 12 12 15 15 12-18 13.8
M. acetivorans 12-18 12.71 12-33 13.72 12-28 13.92 15-35 17.38 12-35 14.69
M. mazei 12 12 12-138 20.19 12-164 31.82 15-25 16.21 12-164 20.63
N. equitans 0 0 12 12 12-20 14.67 15 15 12-20 13
P. torridus 12 12 12-21 12.45 12-20 14 15 15 12-21 13.25
P. aerophilum 12-14 12.75 12-24 12.86 12-16 13.5 15-20 15.71 12-24 13.23
P. abyssi 12 12 12-15 12.43 12 12 15-25 16.43 12-25 13.7
P. furiosus 0 0 12-21 12.75 12 12 15 15 12-21 13.59
P. horikoshii 0 0 12-24 13.64 12 12 15 15 12-24 14.07
S. solfataricus 12-16 12.86 12-18 12.22 12-16 12.27 15 15 12-18 13.11
S. tokodaii 12-14 12.22 12-21 12.83 12-20 12.67 15 15 12-21 13.39
T. acidophilum 12-20 14.67 12-15 12.2 0 0 15 15 12-20 13.05
T. volcanium 12 12 12 12 12-20 13.6 15 15 12-20 13.12
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Trinucleotide repeats

An abundance of trinucleotide repeats was found, which could be due to mechanisms
that suppress nontrimeric repeats (Metzgar et al., 2000). The most common repeats in Archaea
are AAT, AAG and AGC, which corroborates the reported abundance of AAG repeats in plants
and AGC in animals but contrary to the finding of rare AAT repeats in monocots (Varshney et
al., 2002; Thiel et al., 2003). CAG and CCG repeats were found in seven Archaea, despite the
fact that they are known to be highly unstable in many organisms (Moore et al., 1999; Jakupciak
and Wells, 2000; Ireland et al., 2001; Hashem et al., 2002). The abundance of CAG repeats in
Archaea-coding regions could be due to the influence of encoded amino acids (Alba et al.,
1999a,b; Varshney et al., 2002; Thiel et al., 2003). CCG repeats are present in Archaea having
>40% genome CG content. This could be due to the influence of the high CG content of their
genomes (Morgante et al., 2002; Varshney et al., 2002; Thiel et al., 2003). CCG, ACA, CAC,
and GGA repeats may be associated with protein folding/solubility, nucleosome proteins and
stress response (Godde and Wolffe, 1996; Grayling et al., 1997; Mishima et al., 1997; Pereira et
al., 1997; Reeve et al., 1997; Pereira and Reeve, 1998; Satyal et al., 2000; Sandman and Reeve,
2000, 2001). Green and Wang (1994) report that some trinucleotide repeats may be important
for adding new coding regions, new functions to proteins, or for increasing the size of proteins.
The latter may not be true in the case of thermophilic and hyperthermophilic Archaea, as the
protein size is generally small in thermophiles (Chakravarty and Varadarajan, 2000; Hickey and
Singer, 2004). The absence of some repeats, such as GGA, CCG, in some Archaea, in addition
to the absence of ACA, CAC and CAG repeats in non-coding regions of all Archaea but pres-
ence in coding sequences, is an interesting feature.

Tetranucleotide and pentanucleotide repeats

Tetranucleotide repeats are not abundant in Archaea, but unlike in Escherichia coli
(Rocha et al., 2002), they are not underrepresented. Exceptions are M. kandleri and T.
acidophilum, which have one and no tetranucleotide repeats, respectively. Underrepresentation of
CTAG, CATC and GTAC in Halobacterium and M. jannaschii agrees with the findings of Karlin
et al. (1997). However, they reported a normal presence of these repeats in Sulfolobus, while none
was found in the present study. Although tetra- and pentanucleotide repeat densities are more abun-
dant in non-coding regions compared to coding regions, in some Archaea these repeats are absent in
non-coding sequences. Pentanucleotide repeats in Archaea show characteristic distributions as
diverse as in other organisms (Toth et al., 2000; Gur-Arie et al., 2000; Lim et al., 2004).

Coding and non-coding regions

Generally, repeats are more abundant in non-coding regions (Primmer et al., 1997;
Primmer and Ellegren, 1998; Bachtrog et al., 1999; Elgar et al., 1999; Crollius et al., 2000; Gur-
Arie et al., 2000; Dokholyan et al., 2000; Toth et al., 2000; Katti et al., 2001) to avoid the ill
effects of repeat stability in coding regions (Schlotterer, 1998; Hancock and Santibanez-Koref,
1998; Harr et al., 1998, 2000; Ellegren, 2000; Chambers and MacAvoy, 2000; Dokholyan et al.,
2000). Earlier studies suggested no functional roles of SSRs due to their presence in pseudogenes
and intergenic sequences of P. aerophilum (Fitz-Gibbon et al., 2002). Abundance of repeats in
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coding regions of some Archaea is contrary to these findings, and it is evident that Bacillus
subtilis (Rocha et al., 1999) is not exceptional in having abundance of SSRs in coding se-
quences. Trinucleotide repeats are abundant in coding regions in Archaea, like most organisms
studied so far, because they may leave reading frames unperturbed (Karlin et al., 1997;
Subramanian et al., 2003). However, an abundance of tetra- and pentanucleotide repeats was
also found in coding sequences as well as their absence in non-coding sequences of many
Archaea. Therefore, it is possible that SSRs are tolerated in coding regions because their varia-
tions affect not only gene expression but also adaptation to environmental factors in prokaryotes
(see review by Li et al., 2004).

It is known that the factors that affect preferential distribution of repeats in non-coding
and coding regions work differentially in all organisms and the bias is marked in eukaryotes
(Cox and Mirkin, 1997; Marcotte et al., 1999). Is it because the known or yet unknown func-
tions of repeats in prokaryote (Archaea in particular)-coding regions are not important in higher
organisms? It is possible that coding regions in eukaryotes do not have as many sites for inser-
tions as in prokaryotes, or that there is little tolerance for integrations and hence fewer SSRs.
This is because repeat genesis may be a result of insertional events due to transposons and virus
(Ogura et al., 1994; Ramsay et al., 2000; Cardle et al., 2000; Lerat et al., 2002). However, why
Archaea would tolerate SSRs in coding sequences remains uninvestigated, except for the fact
the amino acid reiterations affect protein stability (Gromiha et al., 2002; de Farias and Bonato,
2002; Chakravarty and Varadarajan, 2002; Farias and Bonato, 2003), which would be an essen-
tial requirement for extremophilic Archaea. It would be a fruitful exercise to investigate com-
mon repeat motifs in prokaryotes and eukaryotes, and genes associated with SSRs to study the
fate of specific patterns and coding regions that have retained or lost repeats in eukaryotes. In
this light, genes related to DNA repair, recombination and adaptations to different types of
stress (Rocha et al., 2002), genes associated with t-RNA, r-RNA, DNA repair and replication,
gonads, silk glands and development in Bombyx mori (silkworm) have a high density of SSRs
(Trivedi, 2003).

Horizon region

Dinucleotide repeats were found to be absent in the horizon region, different from the
abundance of AG repeats in 5’UTR of plants and 3’UTR of catfish and the abundance of SSRs
in UTR compared to coding sequences. Since SSRs are not preferred in the UTR in Archaea,
they could not be important for gene regulation or silencing, protein adaptations, and transcrip-
tion slippage, which results in long m-RNAs in other organisms (Stallings, 1995; Wren et al.,
2000; Morgante et al., 2002).

Genome size, SSR density and optimum growth temperature

Nineteen Archaea, hyperthermophiles and thermophiles showed no correlation of OGT
with either total SSR or motif density in genome, coding and non-coding regions. Similarly, total
SSR and motif densities showed no correlation with genome size. However, a trend was seen in
thermophiles, where pentanucleotide repeats correlated positively with genome size (‘r’ = 0.8374;
P < 0.05); this should be examined when other thermophiles are considered for such analysis.
The absence of correlation with genome size is consistent with earlier studies (Hancock, 2002;
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Lim et al., 2004). However, it is contrary to reports of a positive correlation between genome
size and SSR density, the contribution of repeats to increased genome size and the C-value
paradox in various organisms (Hancock, 1996a; Primmer et al., 1997; Achaz et al., 2002; Trivedi,
2004). Paradoxically, N. equitans has the smallest genome size but has the fourth-highest SSR
density. If there was a reduction in genome size of this organism, it may not have been due to
SSR elimination, even if repeats may be superfluous, as suggested for Mycoplasma genitalium
(Hancock, 1996b). SSRs in Archaea of a given environmental group in the present study cor-
roborate with the observation that chromosomes of related organisms generally have similar
repeat densities. The exceptions to this indicate differences in repair mechanisms or selection
pressures, or both (Achaz et al., 2002), leading to differences in SSR evolution and density in
genomes of different sizes (Trivedi, 2004; Lim et al., 2004). This study raises questions about
whether an increase in genome complexity should be attributed to SSRs, because, at least in
prokaryotes, repeats constitute a low percentage of the total genome (as found here); other
factors in addition to tandem repeats may be responsible for the increase in genome size (Hancock,
2002).

Genome size and optimum growth temperature correlation with repeat length

The genome size was not correlated with average repeat lengths of SSRs in the Archaea.
However, the trends to be watched in the future are a positive correlation of total SSRs and
trinucleotide average repeat lengths (‘r’ = 0.495 and 0.498; P < 0.05, respectively) and maxi-
mum repeat lengths (data not shown; r = 0.4738; P < 0.05) in 19 Archaea. Further studies may
confirm whether motif-specific increase in repeat length in Archaea corroborates studies re-
ported for other organisms (Harr et al., 2002). Short repeat lengths were generally found in
fungal genome, where long repeats in large genomes are exceptions rather than the rule, also
found by Lim et al. (2004). For example, M. acetivorans has the largest genome size, but has
a maximum repeat length of 37 bases, but M. mazei, which has the second largest genome size,
has a maximum repeat length of 164 bases. Although coding sequences generally have few long
repeats (Dokholyan et al., 2000; Morgante et al., 2002), they are present in M. mazei AAT
repeat (137 bases) coding sequences of conserved protein, ATA (52 bases) in transcriptional
regulator and ArsR family, and AAG (50 bases) in hypothetical protein. Methanobacterium
thermoautotrophicum coding sequences have AGC (39 bases) in ribosomal protein, in
Halobacterium (CGCAG, 35 bases) and in M. maripaludis (AAAAT) conserved hypothetical
protein.

There was no correlation of SSR average repeat length with OGT in the 19 Archaea
and in the three environmental groups. However, total SSR and pentanucleotide repeats were
inversely correlated (‘r’ = -0.513 and -0.574; P < 0.05) in all the Archaea species. Although this
correlation was not highly significant, with analysis of more Archaea genomes it may be pos-
sible to confirm whether motif-dependent length variations in Archaea are due to differential
mutation rates (Toth et al., 2000; Webster et al., 2002). It is also known that SSR motifs, tract
type, genomic locations, and selection pressures may influence lengths that are dynamic and
may increase in some species, while in others they may decrease (Bowater et al., 1997; Harr et
al., 2002). However, from the present study it cannot be concluded whether repeats are un-
stable (expanding or reducing in size) in Archaea. If there is instability of repeats in Archaea, it
could be due to lack of mismatch repair systems (Fitz-Gibbon et al., 2002).
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Genome CG content, SSR density and SSR CG richness

Archaea genomes revealed varying CG richness (Table 1). All repeat types in all
Archaea, hyperthermophiles (except dinucleotides) and thermophiles (except di- and
tetranucleotides) showed a positive correlation of CG richness of SSRs with CG richness of the
genome (Table 5). There was no correlation of genome CG content with total SSR and total
motif density, except an inverse correlation of pentanucleotide repeats (‘r’ = -0.621 and -0.604;
P < 0.05) in genome and coding regions (‘r’ = -0.832; P< 0.005). However, the trends to be
watched in the future are a positive correlation of trinucleotide density in genome and coding
regions (‘r’ = 0.493 and 0.524; P < 0.05). Hyperthermophiles had an inverse correlation of total
SSR, tetra- and pentanucleotides (‘r’ = -0.6406, -0.6701 and -0.7394, respectively; P < 0.05) in
the genome. Trinucleotides in thermophiles showed a positive correlation (‘r’ = 0.8371, 0.8494;
P < 0.05) in the total genome and in coding regions. With availability of more Archaea genome
sequences, it may be confirmed whether with increasing CG content of the genome, the density
of some SSR motifs increases, as in fungal genomes (Lim et al., 2004). It may confirm whether
nucleotide composition of the genome influences some repeat types and possibly their genera-
tion and amplification (Achaz et al., 2002) in Archaea. Correlation analysis shows that OGT has
no influence on CG richness of SSR in total genome, coding and intergenic sequences in all
Archaea, and in hyperthermophiles, thermophiles and mesophiles, analyzed separately.

Table 5. Correlation of genome CG richness with simple sequence repeat (SSR) CG richness.

‘r’ = Pearson correlation coefficient value, d.f. = degrees of freedom.

All Archaea Hyperthermophiles Mesophiles Thermophiles
(d.f. = 17) (d.f. = 10) (d.f. = 1) (d.f. = 4)

‘r’ P ‘r’ P ‘r’ P ‘r’ P

Total SSR 0.9629 <0.001 0.977 <0.001 0.9892 0.9635 <0.01
Dinucleotides 0.504 0.0679 0.8128 0.862
Trinucleotides 0.9029 <0.001 0.9231 <0.001 0.6434 0.9275 <0.01
Tetranucleotides 0.86 <0.001 0.9266 <0.001 0.9729 0.8766
Pentanucleotides 0.9407 <0.001 0.9511 <0.001 0.9991 <0.05 0.9413 <0.01

Trends in mesophiles showed an inverse correlation of dinucleotides (‘r’ = -0.9993; P <
0.05) and a positive correlation of pentanucleotides (‘r’ = 0.9999; P < 0.001) with OGT in the
total genome. The CG content of genome dinucleotide density showed a positive correlation (‘r’
= 0.9971; P < 0.05) in the total genome. An indication of inverse correlation of OGT with
pentanucleotide density (‘r’ = 0.99949; P < 0.05) and tetranucleotide CG richness (‘r’ = 0.99905;
P < 0.05) was also seen. Only pentanucleotide CG richness had a positive correlation with
genome CG richness.

From the foregoing information, it is evident that SSRs are common in Archaea ge-
nomes, which may be due to certain advantages to the organisms and may be a “molecular
device” for quick adaptations to environmental stress (Young et al., 2000; Li et al., 2002). The
variations in distribution, abundance and motif preferences among Archaea could be due to
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different adaptive strategies, as in other organisms (Rocha et al., 1999). It would therefore be
interesting to investigate other stress factors, such as salinity, radiation and pressure, in addition
to temperature and presence or absence of efficient repair and replication machinery to under-
stand the reasons for these differences. For example, in Halobacterium, environmental stress
may have resulted in a high density of SSRs, which might function as a source for the generation
of genetic diversity, allowing the organism to better respond to a wide range of stress, due to
salinity, UV radiation, oxygen, and nutrients (Kennedy et al., 2001).

CONCLUSIONS

It is evident that unlike the other two domains, some Archaea have abundant SSRs in
coding regions. There is preferential distribution of repeat motifs, and some motifs are organism
specific. Few SSRs are present partially in intergenic and coding sequences. There was no
correlation of SSR density with genome size, CG richness of genome or OGT. Similarly, OGT
had no influence on CG richness or repeat length of SSRs. Analysis of more sequences from
Archaea living in different environmental niches may help us to understand the influence of
extreme conditions on SSRs. However, the significance of many of these repeats in Archaea is
not known; further investigation may reveal an answer.
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